a2 United States Patent

Nagarkar et al.

US009448739B1

10) Patent No.: US 9,448,739 B1
45) Date of Patent: Sep. 20, 2016

(54) EFFICIENT TAPE BACKUP USING
DEDUPLICATED DATA

(75) Inventors: Kuldeep S. Nagarkar, Pune (IN);
Ashish Govind Khurange, Hadapsar
Pune (IN)

(73) Assignee: Veritas Technologies LL.C, Mountain
View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1517 days.

(21) Appl. No.: 12/965,123

(22) Filed: Dec. 10, 2010

(51) Int. CL

GOGF 12/00 (2006.01)
GOGF 3/06 (2006.01)
GOGF 11/14 (2006.01)
(52) US.CL
CPC GOGF 3/0641 (2013.01); GOGF 11/1453

(2013.01)

(58) Field of Classification Search

CPC ittt GOG6F 3/0641
711/161
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0013129 Al* 1/2009 Bondurant GOG6F 3/0608
711/115

* cited by examiner

Primary Examiner — Matthew Bradley
(74) Attorney, Agent, or Firm — Campbell Stephenson LLP

(57) ABSTRACT

Various systems and methods can be used to perform backup
to tape. For example, one method involves detecting an
amount of storage in a tape drive that is available for
concurrent access. The method then compares the size of a
plurality of backup images to the amount of storage prior to
initiating an archive operation. The method then involves
adding information identifying a backup image to a list of
backup images to be included in an archive operation and
performing the archive operation, which involves writing
the backup images to tape drive.

20 Claims, 6 Drawing Sheets

Receive archive request
C Start }——vl 200 J

‘ Determine size of container space
Select object
210

Select backup image
215
Room in container space?
220

Add image to list
225

i

Update remaining container space
value 230

Sort list
240

¥

245

v
Create map
250

v

| Update metadata |

(Finish }___‘ Copy dz totape

U.S. Patent Sep. 20, 2016 Sheet 1 of 6

Client
110(1

Client
110(2)

US 9,448,739 B1

Client
110(3

Backup Server
130
Backup Medule
w 13
Storage Deduplication Module
120 140
Dat
1258 Archive Module
— 145
N~—
//—_——_\
Backup Storage
150
Backup Data
155
/——__x
Tape Lib
Deduplicated Data Storage ape1 8]O e
160 T
Deduplicated Data
165
Metadata Slot Slot
170 1 ® [4 n
~—————————

FIG.

1

U.S. Patent

Sep. 20, 2016

Sheet 2 of 6

US 9,448,739 B1

Start

>———>

FIG. 2

Receive archive request
200

v

Determine size of container space
205

v

Select object
210

A

Select backup image
215

A

No

Room in container space?

Add image to list
225

v

Update remaining container space
value 230

Additional image for
selected object? 235

Additional object for
archiving? 238

Yes

Sort list
240

v

Update metadata
245

v

Create map
250

v

Finish

Copy data to tape
255

U.S. Patent Sep. 20, 2016 Sheet 3 of 6 US 9,448,739 B1

=

v

Receive restore request
300

v

Mount tapes
302

Random write allowed?
305

A 4

A 4

Reserve staging area
310 Pre-allocate file

340

y

Read chunk from tape
315 Read chunk from tape

345

y

A 4

A 4
Write chunk to staging area

A 4

320 Access map
350
v A 4
es
Write chunk to specified location
355
No
Access map
330 Mare chunks?
360
v
Write chunks No
335

l (e

C Finish)

FIG. 3

U.S. Patent Sep. 20, 2016 Sheet 4 of 6 US 9,448,739 B1

Backup image | Disk Offset

A 1 9

A 2 4

B 2 6

B 1 2

B 2 7

A 1 8

FIG. 4A
Backup image |Disk Offset
1 2

A 1 8

A 1 9

A 2 4

B 2 6

B 2 7

FIG. 4B
Backup image |Disk Offset Location
B 1 2 1
A 1 8 2
A 1 9 3
A 2 4 4
B 2 6 5
B 2 7 6
FIG. 4C

Backup image |Locations
A 2,3,4
B 1,5,6

FIG. 4D

US 9,448,739 B1

Sheet 5 of 6

Sep. 20, 2016

U.S. Patent

G31 ejeq Ser
o aealidnpa eleq dnyoe
5T paiediidnpeq e dnmyoeg
fieiqy ade|
€5 €5
afeloig RN
eleq pajealdnpaq abeloig eleq T 75
'y A A |alAa(Q 201A8Q
induy feydsiq
X A
v A 4 v
ES 34 o Zi8
30BLB)| aoepalU| o7 Jaidepy kerdsiq ainongseluj
abelolg indyj ayeg 71 UQIESIUINWWOY)
A A A 'Yy
A v A4) 4
A A A A v
v v v v
Zes — —_ —
aoeiay| 0cg Sw =2 v
LojEOIUNWWOY) 18jj04u0) O 1ajj01u07) Alowapy SNPO ANy 10888201
918
Kiowayy waysAs /
0L
welsAg bugndwon

US 9,448,739 B1

Sheet 6 of 6

Sep. 20, 2016

U.S. Patent

{N)089

N)0L9

20I1A8(

A

TE

1)069

A

1)09
201A8(]

A

201A8Q

569
feny
obe10)s jusbyau

v

[GZ]
1anIeg

=70
3INPO
BAIYOLY
iz
JENVES
A
{NJ039 »
01A8(b
N
.
.
11099 P
20In8Q N

9 °9l4

53
w80

053
HomisN

\

0¢9
Wiy

019
juslo

AN

009

2IN199J1Y21Y I0MBN

US 9,448,739 Bl

1
EFFICIENT TAPE BACKUP USING
DEDUPLICATED DATA

FIELD OF THE INVENTION

This invention relates to backing up and restoring data
and, in particular, to backing up and restoring deduplicated
data using tape storage devices.

DESCRIPTION OF THE RELATED ART

Data storage media, such as random access memory
(RAM) and hard disks, can be expensive. Tape storage
devices can be used to provide low-cost, low-energy con-
sumption, long-term data storage. Tape storage devices are
sequential access memory and thus, unlike RAM and hard
disks, read and write performance varies significantly
depending on the distance between the position of the read
head and the location of the desired data in the tape storage
device. Also, tape storage devices typically consist of mul-
tiple tapes, of which only a given number can be mounted
at any one time. This means that accessing data stored in a
tape storage device can involve physically unmounting and
mounting (swapping) tapes. Such physical swapping of
tapes affects the time taken to access data stored in tape
storage devices. In general, access to data stored on tape
storage devices is slower than access to data on random
access media. Additionally, as the amount of tape swapping
increases, the amount of time taken to access data increases
even more.

Given the costs associated with acquiring storage media,
great lengths are taken to reduce the amount of storage space
used to store a given amount of data. Data deduplication is
one way to reduce the amount of storage space used to store
a given amount of data. However, the nature of deduplicated
data can present challenges when deduplicated data is stored
in tape storage. One challenge is apparent when restoring
deduplicated data from tape storage. If deduplicated data is
stored across multiple tapes, restoring the data can involve
repeated swapping of tapes, which can negatively impact
restore performance by increasing the time taken to restore
the deduplicated data.

SUMMARY OF THE INVENTION

Various systems and methods for performing archive
operations to tape are disclosed. For example, one method
involves detecting an amount of storage in a tape drive that
is available for concurrent access. The method then com-
pares the size of a plurality of backup images to the amount
of storage prior to initiating an archive operation. The
method then involves adding information identifying a
backup image to a list of backup images to be included in an
archive operation and performing the archive operation,
which involves writing the backup images to tape drive.

In an embodiment, the list of backup images includes
fingerprint values that identify a storage location for a block,
a disk value, and an offset value. In this embodiment, the
method involves sorting the fingerprints and modifying one
or more of the fingerprints. In an embodiment, the backup
images are backup images of an object and include dedu-
plicated data. The method can write the backup images to the
tape drive in the order specified by the list.

In an embodiment, the method involves creating a map
that identifies storage locations for each backup image

10

25

40

45

65

2

written to the storage device. This embodiment can also
involve restoring an object using a backup image on the tape
drive.

An example of a system can include one or more proces-
sors and memory coupled to the processors. The memory
stores program instructions executable to perform a method
like the one described above. Similarly, such program
instructions can be stored upon a computer readable storage
medium.

The foregoing is a summary and thus contains, by neces-
sity, simplifications, generalizations and omissions of detail;
consequently those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any
way limiting. Other aspects, inventive features, and advan-
tages of the present invention, as defined solely by the
claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 is a block diagram of a computing system that
includes an archive module, according to one embodiment.

FIG. 2 is a flowchart of a method of performing a backup
operation, according to one embodiment.

FIG. 3 is a flowchart of a method of performing a restore
operation, according to one embodiment.

FIG. 4A is a table showing entries in a fingerprint data-
base, according to one embodiment.

FIG. 4B is a table showing sorted entries in a fingerprint
database, according to one embodiment.

FIG. 4C is a table showing modified entries in a finger-
print database, according to one embodiment.

FIG. 4D is a table showing a map of a tape storage device,
according to one embodiment.

FIG. 5 is a block diagram of a computing device, illus-
trating how an archive module can be implemented in
software, according to one embodiment.

FIG. 6 is a block diagram of a networked system, illus-
trating how various computing devices can communicate via
a network, according to one embodiment.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments of the
invention are provided as examples in the drawings and
detailed description. It should be understood that the draw-
ings and detailed description are not intended to limit the
invention to the particular form disclosed. Instead, the
intention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the inven-
tion as defined by the appended claims.

DETAILED DESCRIPTION

Users, for example employees of a company, use com-
puters to access data in the performance of various duties.
Data can be stored in data storage media and can be accessed
when convenient to the user. Data that is accessed fre-
quently, regularly, or recently is commonly stored in a
primary storage device that is readily accessible to users.
Data that is used infrequently can be copied to long term
archive storage. Data can be backed up to protect data
against loss due to, for example, computer failure or user
error.

US 9,448,739 Bl

3

A number of techniques are available to reduce the
amount of storage used to store backed up data. One such
technique is data deduplication, which produces dedupli-
cated data, which can be stored in deduplicated data storage.
In deduplicated data storage, only a single copy of a par-
ticular unit of data (e.g., a data block or chunk) is stored,
rather than multiple redundant copies of the data. For
example, a first snapshot can be made of data stored on a
primary disk, where the data includes a first chunk. The
snapshot, which includes the first chunk, can be stored in
backup storage. A second snapshot that also includes the first
chunk can be made of the data stored on the primary disk
(e.g., at a later time) and stored in backup storage. If the first
chunk did not change between the time the first snapshot was
made and the time the second snapshot was made, backup
storage contains two identical copies of the first chunk.
Storing multiple copies of the same data is redundant and
uses additional storage space.

In order to reduce the amount of storage space used to
store backup data, the backup data can be deduplicated,
producing a deduplicated backup image. In order to produce
a deduplicated backup image, deduplication software can
examine data (e.g., the first and second snapshots in the
example above) and detect multiple copies of the same data.
Instead of creating additional copies of the data that already
exists in the deduplicated data storage device, the dedupli-
cation software instead stores an indication that the data
already exists. The deduplication software also generates an
indication of where in the deduplicated data storage device
the data can be located. In this way, a single copy of the data
is “shared” rather than storing multiple copies of the data.
Deduplicating data can produce significant space savings.
For example, a 50X space savings can be realized. This is
just one example, and a larger or smaller deduplication ratio
is possible.

Deduplicated backup images can be copied to a dedupli-
cated data storage device. The indication of where the shared
block is located can be stored in the deduplicated data
storage device itself and/or can be stored, for example, on a
backup server. The deduplicated data storage device can be
a separate storage device, or can be a designated area, such
as a partition or disk in a storage device.

Data, such as backup data, can also be archived for long
term storage purposes. For example, backup images can be
streamed from deduplication storage to tape. Tape has
advantages of being relatively inexpensive, reliable, and
does not consume power when not being accessed.

When archiving from deduplicated storage, one approach
is to copy the data from the deduplicated storage to tape in
replica fashion. That is, an exact copy of the data in
deduplicated storage can be produced in tape storage. This
method preserves the space reduction achieved by dedupli-
cating the data. However, depending on the size of the
deduplicated data storage, this can still consume a large
number of tapes, and the data can be organized such that
restoring from such a replica is inefficient (e.g., requires tape
swapping).

In order to restore archived data from tapes, the data can
be read from tape media and written to, for example, primary
storage. Tape libraries typically provide a fixed number of
slots that can be used for restore. That is, the number of tapes
that can be mounted at any given time is equal to the number
of slots in the tape library. Of the total number of slots, a set
number is typically designated for backup operations, and
the remaining slots are designated for restore operations. In
many cases, the amount of data in a deduplicated data
storage device is too large to fit in a single tape or set of tapes

35

40

45

4

that are designated for restore operations. This can lead to
poor performance if a restore is performed from tape. That
is, when a deduplicated backup image is stored in a dedu-
plicated data storage device, it is likely that any shared
blocks are stored in various non-sequential locations
throughout the backup image. When the backup image is
streamed to tape, the shared blocks can likewise be scattered
among multiple tapes.

Not only does keeping track of the locations of shared
blocks present a challenge, retrieving the shared blocks can
present challenges. If the deduplicated backup image is
stored across a greater number of tapes than there are slots
for restore, restoring the backup image can involve mount-
ing and unmounting tapes. Take an example in which a
replica is made of deduplicated storage. In this example, the
deduplicated data is spread across 50 tapes. If the tape
library has only 10 slots for restore operations, restoring a
selected backup image can involve a considerable amount of
tape swapping, resulting in an inefficient process.

An alternative approach to creating a replica in tape of a
deduplicated data storage device is to rehydrate data from
the deduplicated storage device prior to archiving the data to
tape. Rehydrating involves writing a copy of each shared
block into each backup image that shares the block. A
problem with rehydration is that rehydrated (reduplicated)
data uses a relatively large amount of space, and the space
reductions provided by the deduplication process are lost.
This means that a relatively large amount of tape storage is
used. This increases the likelihood of mounting and
unmounting tapes to restore backup images, which slows the
restore process. Consider an example where a deduplicated
storage device stores 32 terabytes of data. If the deduplica-
tion ratio is 50x, the deduplicated storage device essentially
stores 1600 terabytes of data (32*50). Thus, writing rehy-
drated data to tape will consume 1600 terabytes of space.
Not only does the increased capacity increase the cost of the
tape storage system, but writing the additional data takes
time and thus introduces delay into the archive process,
which is generally undesirable.

Also, the rehydration process itself introduces delay. That
is, identifying the storage locations of the shared blocks and
retrieving data from the identified locations in the dedupli-
cated storage device takes time. Since the shared blocks are
typically scattered throughout the deduplicated storage,
accessing the deduplicated storage involves searching for
various locations throughout the deduplicated storage. This
process is inefficient and introduces additional delay into the
archive operation.

It would be advantageous if the tape archive could retain
the storage space reduction benefits realized by the dedu-
plicated storage. It would also be advantageous if the data
being archived could be read sequentially (streamed) from
deduplicated storage.

FIG. 1 is a block diagram of a computing system that
includes an archive module that performs archive operations
using deduplicated data. The system of FIG. 1 includes
clients 110(1), 110(2), and 110(3) coupled to storage 120 and
a backup server 130 by a network 115. Storage 120 includes
data 125. Backup server 130 includes a backup module 135,
deduplication module 140, and archive module 145. Backup
server 130 is also coupled to backup storage 150, which
includes backup data 155, deduplicated data storage 160,
which includes deduplicated data 165 and metadata 170, and
tape library 180, which includes slots 1 through n.

Clients 110(1), 110(2), and 110(3) (collectively referred to
as clients 110) and backup server 130 can each include one
or more computing devices. Such computing devices can

US 9,448,739 Bl

5

include servers, personal computing devices, laptop com-
puters, net books, personal digital assistants, cellular phones,
or the like.

Storage 120, backup storage 150, and deduplicated data
storage 160 can include one or more of a variety of different
storage devices, including hard drives, compact discs, digital
versatile discs, solid state drive (SSD) memory such as Flash
memory, and the like, or one or more logical storage devices
such as volumes implemented on one or more such physical
storage devices. Storage 120, backup storage 150, and
deduplicated data storage 160 can also include arrays of
such storage devices. Storage 120 can be included within,
directly connected to, or connected via a network to clients
110.

One or more applications (not shown) running on one or
more of clients 110 can access data 125 in storage 120. Data
125 can include various types of files and other data items,
or objects, such as emails, journal entries, contacts, notes,
web documents, word documents, spreadsheets and the like.
Access to data 125 can include, for example, reading,
writing, copying, relocating, or otherwise modifying data
125.

Backup server 130 can backup data 125 by copying or
moving all or a portion of data 125 to backup data 155 in
backup storage 150. Backup data 155 can include one or
more backup files or backup images, such as a full backup
image, an incremental backup image, a synthetic backup
image, and the like. Such backup images can be generated
by enterprise backup software such as, for example, Syman-
tec NetBackup products, Symantec BackupExec products,
and the like.

Backup module 135 can create a snapshot of a data source
(e.g., file or object) in data 125 and add the snapshot to
backup data 125. In an embodiment, backup module 135
periodically creates snapshots of an object, such as a file,
database, volume, or virtual machine, stored in data 125 and
stores the snapshots in backup data 155. Each snapshot
includes a backup image of the object. This can result in
multiple copies of the same data being stored in backup data
155, which increases the amount of storage used in backup
data 155. For example, a first backup image of an object can
include of 100 chunks of data. A second backup image of the
object, made at a later time, can also include of 100 chunks
of data. However, of the 100 chunks of data in the second
backup image, 80, for example, can be identical, or
unchanged, since the first backup image was created. Thus,
the first and second backup images have 80 common chunks
and 20 uncommon chunks. Storing two copies of the 80
common chunks is redundant.

Deduplication module 140 can create deduplicated
backup images from backup data 155 and store the dedu-
plicated backup images in deduplicated data 165. In an
embodiment, deduplication module 140 selects a backup
image in backup data 155 to deduplicate. Deduplication
module 140 determines whether each chunk of data in the
selected backup image already exists in deduplicated data
165. Deduplication module 140 can calculate a signature
(e.g., hash or checksum) for each chunk and compare the
signature to signatures stored in metadata 170. If the signa-
ture is found, the chunk already exists in deduplicated data
165 and deduplication module 140 does not copy the chunk
to deduplicated data 165. If the signature is not found, the
chunk does not exist in deduplicated data and deduplication
module 140 copies the chunk to deduplicated data 165 and
adds the signature to metadata 170. In an embodiment,
signatures are known as fingerprints and are stored in a
fingerprint database in metadata 170.

10

15

20

25

30

35

40

45

50

55

60

65

6

Deduplication module 140 can process all the chunks in
a selected backup image in this way. This allows a reduction
in space consumed in storing the backup images as copying
a backup image to deduplicated data storage avoids copying
those chunks that are already stored in deduplicated data
storage. Instead, deduplication module can store a pointer
indicating where the previously stored (common) chunk is
located. Those chunks that are already stored (e.g., as
common chunks that are part of another backup image) are
“shared.” That is, if a user attempts to access a shared chunk
in a backup image, access can be redirected to the chunk that
was already stored, or the shared chunk.

The system of FIG. 1 also includes archive module 145.
Archive module 145 can create archive copies in tape library
180 of backup images stored in deduplicated data storage
160. Archive module 145 can also restore data from tape
library 180. Archive and restore operations are described in
greater detail in regard to FIGS. 2 and 3, respectively. Tape
library 180 has n slots. A tape (not shown) can be mounted
in each slot. Data can be written to a mounted tape (e.g., in
a backup operation) or data can be read from a mounted tape
(e.g., in a restore operation). A certain number of the slots in
tape library 180 can be reserved for restore operations.

FIG. 2 is a flow diagram of a method of performing an
archive operation. The method can be performed by the
system of FIG. 1, in particular by a backup server, such as
backup server 130 of FIG. 1, which includes an archive
module, such as archive module 145 of FIG. 1. The backup
server operates in conjunction with a tape library, such as
tape library 180 of FIG. 1, and a deduplicated storage
device, such as deduplicated data storage 160 of FIG. 1.

The method begins when an archive module receives an
archive request, e.g., from a backup server, at 200. The
archive request can identify data to be archived, e.g., an
object, one or more backup images, portions of backup
images, or storage locations (e.g., tracks, volumes, or disks).

The archive module determines the size of a container
space at 205. The container space represents an amount of
data that a tape library can provide restore access to at one
time. In order to determine the size of the container space,
the archive module can multiply the number of slots in the
tape library reserved for restore (restore slots) by the size of
the tapes that can be mounted in the restore slots. This gives
the maximum amount of data that can be restored without
unmounting and remounting any tapes. The container space
can be subdivided into multiple containers.

Next, the archive module selects an object to archive at
210. This can be an object specified by the archive request
or an object that has backup images stored in a disk specified
by the archive request. The selection can be based on
information regarding a particular object, such as how many
backup images of the object are stored in deduplicated data
storage. A selected object can have a number of backup
images. These images can represent the state of the object at
various times. The archive module can create a list of all
backup images of the selected object. In an embodiment,
archive module selects backup images of the same object, as
such backup images are likely to share a relatively high
percentage of blocks with each other as compared to the
percentage of blocks shared by backup images of different
objects.

At 215, the archive module selects a backup image of the
selected object. The backup image can be specified in the
archive request. In an embodiment, the archive module can
traverse, e.g., in order, the list of all backup images for the
selected object. In another embodiment, the archive module
can select a backup image based, for example, on the

US 9,448,739 Bl

7

chronological order of creation of the backup images, the
location of the backup image in deduplication data storage,
or how many shared blocks are present in backup images of
the object stored in deduplicated data storage. For example,
the archive module can detect the percentage of blocks
shared between a first backup image and a second backup
image and compare the percentage with the percentage of
blocks shared between the first backup image and other
backup images. The archive module can select a backup
image to archive based on this comparison. That is, the
archive module can select a backup image with a relatively
high percentage of shared blocks in order to maximize
storage space utilization benefits of deduplication.

Next, the archive module compares the size of the
selected backup image with the available space in the
container space, at 220. In an embodiment, the archive
module detects the size of the selected backup image by
detecting the size of each chunk of the backup image, and
summing the sizes of the chunks. In an embodiment, the
archive module identifies each chunk in the backup image
by accessing a fingerprint database. A fingerprint identifies
a chunk of an image, the disk the chunk is stored on, and an
offset into the disk. A fingerprint can also identify a content
router that can be used to access the chunk. Fingerprints for
some or all of the chunks of data stored in deduplicated data
storage can be stored in a database called a fingerprint
database. The fingerprint database can be stored in dedupli-
cated data storage or on the backup server.

If the container space has enough room to store the
selected backup image, the archive module adds information
identifying the backup image to a list, at 225, referred to
herein as a fingerprint database map. The information can
include the fingerprints of the chunks of the backup image.
Backup images identified by the list are selected to be
included in the archive operation. If the container space does
not have enough room to store the selected backup image,
the archive module determines whether additional backup
images for the selected object are stored in deduplicated data
storage, at 235, as discussed below.

After adding information identifying the backup image to
a list of backup images, the archive module updates the
remaining size in the container space, at 230. The archive
module subtracts the size of the added backup image from
the remaining size of the container space. The archive
module can use the calculated size of the backup image (as
discussed above) for this operation. In an embodiment, the
archive module allocates a portion of the container space for
metadata. The archive module can subtract the size of the
allocated portion from the total size of the container space.

At 235, the archive module detects whether deduplicated
data storage stores any additional backup images of the
selected object. If so, the method returns to 215, where the
archive module selects a next backup image to archive and
detects (at 220) whether there is room for the next backup
image to be added to the container space. If so, information
identifying the backup image is added to the list. This
process repeats until all backup images of an object have
been considered and added to the list. Alternatively, backup
images can be added to the list until the archive module
detects that the combined size of the backup images added
to the list is equal to the size of the container space, or that
the container space will be filled completely by the backup
images identified in the list. In one example, all backup
images of a given object will be added to a list to be archived
to a set of tapes where each tape can be mounted concur-
rently. That is, all backup images added to the list can be

20

25

30

35

40

45

50

55

8

restored from tape without having to swap any tapes. The
backup images can be backup images of the same object or
of multiple different objects.

At 238, the archive module detects whether additional
objects remain to be archived. This can occur, for example,
when the archive request specifies multiple objects. In an
embodiment, the container space can accommodate all
backup images for a single object without becoming com-
pletely full. In this embodiment, an additional object is
selected (at 210), and the process repeats. This can result in
backup images for multiple objects being stored in the same
container space.

At 240, the archive module sorts the list. In an embodi-
ment, the list includes information identifying chunks of
backup images that were added to the list. The information
identifying the chunks can be sorted into an ascending order
by disk and location (offset) on the disk, such that reading
chunks from the deduplicated data storage in the order
specified by the sorted list results in a sequential, in-order
read of the deduplicated storage device. This allows the data
to be copied from the deduplicated data store to the tape
library in a single pass of the deduplicated data store. In an
embodiment, sorting the list provides an incremental
improvement in the amount of time required to read the
chunks from the deduplicated data storage device by reduc-
ing non-sequential reads without ensuring a single pass read.

At 245, the archive module updates metadata by assigning
a number to each chunk in the list. In an embodiment, the
number is simply a sequential number that identifies the
position of the chunk in the sorted list. For example, the
chunks can be numbered from O to n, where n is the number
of chunks in the list. The number can be added to the
chunks’ fingerprints or otherwise associated with the
chunks.

At 250, the archive module creates a map that identifies
the backup images and the locations in the tape library that
store chunks for each backup image, referred to herein as an
image map. The archive module can use this map during a
restore operation. For example, if a restore request specifies
a particular backup image, the archive module can use the
image map to identify the locations that store chunks asso-
ciated with the specified backup image. The archive module
can read data from the specified locations to restore the
specified backup image. At 255, the archive module stores
the image map in the tape library and then copies the chunks
in the list from deduplicated data storage to the tape library.
In an embodiment, the image map can be stored in dedu-
plicated data storage or in other storage devices. For
example, the image map can be added to a catalog database
that identifies archived objects, the containers that store the
archived objects, and/or locations in the containers of
backup images of the objects.

FIG. 3 is a flowchart of a method of performing a restore
operation. The method can be performed by a backup server,
such as backup server 130 of FIG. 1, which includes an
archive module, such as archive module 145 of FIG. 1. The
backup server operates in conjunction with a tape library,
such as tape library 180 of FIG. 1, and a storage device, such
as storage 120 of FIG. 1.

The method begins at 300, when an archive module
receives a restore request from a backup server. The restore
request can specify an object or backup image stored in the
tape library. The archive module then identifies a container,
or set of tapes, and indicates that the set of tapes should be
mounted in the tape library. For example, the archive module
can access a catalog database to identify the set of tapes that

US 9,448,739 Bl

9

stores the specified backup image. At 302, the indicated set
of tapes is mounted in the tape library.

The restore request can also specify a destination, or
target storage device. This is the device to which the restored
data is to be written. At 305, the archive module determines
whether the target storage device allows random access
writes. This depends on the type and configuration of the
storage device.

If random writes are not allowed, the archive module
reserves a staging area at 310. The staging area can be
located in the target storage device or in another storage
device. The archive module can determine the size of the
staging area by calculating the size of the backup image
specified by the restore request.

At 315, the archive module reads a chunk of data from the
tape library. At 320, the archive module writes the chunk to
the staging area.

At 325, the archive module detects whether there are more
chunks. If so, the process returns to 315, where the archive
module reads another chunk. Otherwise, the archive module
accesses a map at 330. Accessing a map can involve
accessing a fingerprint database map. The archive module
can determine, from the fingerprint database map, the loca-
tions or order in which to store the chunks in the staging
area. At 335, the archive module copies the chunks from the
staging area to the target location, e.g., as specified by the
restore request. Alternatively, the chunks can be stored in the
staging area until requested by, for example, a requesting
application.

If, at 305, the archive module detects that random writes
are allowed the archive module pre-allocates a file at 340.
The archive module can determine the appropriate size of
the file, for example, by accessing a fingerprint database
map and determining the total size of all chunks being
restored. At 345, the archive module reads a chunk from the
tape library. The archive module accesses a map at 350. The
archive module can determine, based on the map, or finger-
print database, the location in the file of the chunk that was
just read. For example, the map can specity that the chunk
is the i chunk of a backup image. The archive module can
store the chunk in the i* location of the pre-allocated file, at
355. At 360, the archive module detects whether there are
more blocks. If so, the method loops to 345, where the
archive module reads another block. Otherwise, the method
ends.

FIG. 4A is a table showing entries in a fingerprint data-
base. The fingerprint database is stored, in an embodiment,
in metadata, e.g., metadata 170 of FIG. 1. In this embodi-
ment, the fingerprint database is created and modified by a
deduplication module, e.g., deduplication module 140 of
FIG. 1, e.g., when data writes are received at a deduplicated
data storage device, e.g., deduplicated data storage 160 of
FIG. 1. As shown, the table includes columns for a backup
image identifier, a disk identifier, and an offset identifier.
Each row is a fingerprint, and identifies a chunk of data
stored in deduplicated data storage, such as deduplicated
data storage 160 of FIG. 1. The table in FIG. 4A shows that
backup image A includes three chunks of data. A first chunk
of backup image A is stored on disk 1, at offset 9. A second
chunk of backup image A is stored on disk 2, at offset 4. A
third chunk of backup image A is stored on disk 1, at offset
8. Backup image B also includes three chunks of data. A first
chunk of backup image B is stored on disk 2, at offset 6. A
second chunk of backup image B is stored on disk 1, at offset
2. A third chunk of backup image B is stored on disk 2, at
offset 7.

10

15

30

40

45

10

FIG. 4B is a table showing sorted entries in a fingerprint
database. The table has been sorted in ascending order such
that the chunks identified by the table can be read from the
front to the back of the deduplicated storage device in a
single pass. That is, a read head, or the like can read the
chunks by starting at the first location of the deduplicated
storage device and advanced to the last location of the
deduplicated storage device without reversing direction.

FIG. 4C is a table showing modified entries in a finger-
print database. An additional column identifies the order in
which the chunks are to be read from deduplicated data
storage and written to tape, such as tape library 180 of FIG.
1. A chunk of backup image B is stored at disk 1, offset 2.
This chunk is the first chunk in the deduplicated data
storage. That is, this chunk is at the location closest to the
beginning of the deduplicated storage device of any of the
chunks identified in the fingerprint database. The chunk at
the location that is the second closest to the beginning of the
deduplicated storage device is a chunk of backup image A
stored at disk 1, offset A. The first chunk is assigned the
number 1, and the second chunk is assigned the number 2,
e.g., by an archive module, such as archive module 145 of
FIG. 1. The rest of the chunks in the fingerprint database are
sequentially numbered similarly.

FIG. 4D is a table showing a map of a tape storage device.
The table can be stored, e.g., by an archive module, such as
archive module 145 of FIG. 1, in a tape library, such as tape
library 180 of FIG. 1, and can be used by the archive module
to identify which locations in the tape library contain chunks
of data belonging to the specified backup image. For
example, backup image A has chunks of data stored at the
274 37 and 4™ locations in the tape library. Backup image
B has chunks of data stored at the 1%, 5% and 67 locations
in the tape library.

FIG. 5 is a block diagram of a computing system 510
capable of implementing an archive system as described
above. Computing system 510 broadly represents any single
or multi-processor computing device or system capable of
executing computer-readable instructions. Examples of
computing system 510 include, without limitation, any one
or more of a variety of devices including workstations,
personal computers, laptops, client-side terminals, servers,
distributed computing systems, handheld devices (e.g., per-
sonal digital assistants and mobile phones), network appli-
ances, storage controllers (e.g., array controllers, tape drive
controller, or hard drive controller), and the like. In its most
basic configuration, computing system 510 may include at
least one processor 514 and a system memory 516. By
executing the software that implements an archive module
145, computing system 510 becomes a special purpose
computing device that is configured to participate in archive
operations.

Processor 514 generally represents any type or form of
processing unit capable of processing data or interpreting
and executing instructions. In certain embodiments, proces-
sor 514 may receive instructions from a software application
or module. These instructions may cause processor 514 to
perform the functions of one or more of the embodiments
described and/or illustrated herein. For example, processor
514 may perform and/or be a means for performing all or
some of the operations described herein. Processor 514 may
also perform and/or be a means for performing any other
operations, methods, or processes described and/or illus-
trated herein.

System memory 516 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable

US 9,448,739 Bl

11

instructions. Examples of system memory 516 include,
without limitation, random access memory (RAM), read
only memory (ROM), flash memory, or any other suitable
memory device. In one example, program instructions
implementing an archive module 145 may be loaded into
system memory 516.

In certain embodiments, computing system 510 may also
include one or more components or elements in addition to
processor 514 and system memory 516. For example, as
illustrated in FIG. 5, computing system 510 may include a
memory controller 518, an Input/Output (I/O) controller
520, and a communication interface 522, each of which may
be interconnected via a communication infrastructure 512.
Communication infrastructure 512 generally represents any
type or form of infrastructure capable of facilitating com-
munication between one or more components of a comput-
ing device. Examples of communication infrastructure 512
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Compo-
nent Interconnect (PCI), PCI express (PCle), or similar bus)
and a network.

Memory controller 518 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of computing system 510. For example, in certain
embodiments memory controller 518 may control commu-
nication between processor 514, system memory 516, and
1/O controller 520 via communication infrastructure 512. In
certain embodiments, memory controller 518 may perform
and/or be a means for performing, either alone or in com-
bination with other elements, one or more of the operations
or features described and/or illustrated herein.

1/O controller 520 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, in certain embodiments I/O controller 520 may
control or facilitate transfer of data between one or more
elements of computing system 510, such as processor 514,
system memory 516, communication interface 522, display
adapter 526, input interface 550, and storage interface 554.

Communication interface 522 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between computing system 510
and one or more additional devices. For example, in certain
embodiments communication interface 522 may facilitate
communication between computing system 510 and a pri-
vate or public network including additional computing sys-
tems. Examples of communication interface 522 include,
without limitation, a wired network interface (such as a
network interface card), a wireless network interface (such
as a wireless network interface card), a modem, and any
other suitable interface. In at least one embodiment, com-
munication interface 522 may provide a direct connection to
a remote server via a direct link to a network, such as the
Internet. Communication interface 522 may also indirectly
provide such a connection through, for example, a local area
network (such as an Ethernet network), a personal area
network, a telephone or cable network, a cellular telephone
connection, a satellite data connection, or any other suitable
connection.

In certain embodiments, communication interface 522
may also represent a host adapter configured to facilitate
communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host

10

15

20

25

30

40

45

55

60

65

12

adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1594 host adapters, Serial Advanced Technology
Attachment (SATA), Serial Attached SCSI (SAS), and exter-
nal SATA (eSATA) host adapters, Advanced Technology
Attachment (ATA) and Parallel ATA (PATA) host adapters,
Fibre Channel interface adapters, Ethernet adapters, or the
like.

Communication interface 522 may also allow computing
system 510 to engage in distributed or remote computing.
For example, communication interface 522 may receive
instructions from a remote device or send instructions to a
remote device for execution.

As illustrated in FIG. 5, computing system 510 may also
include at least one display device 524 coupled to commu-
nication infrastructure 512 via a display adapter 526. Dis-
play device 524 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 526. Similarly, display adapter 526
generally represents any type or form of device configured
to forward graphics, text, and other data from communica-
tion infrastructure 512 (or from a frame buffer, as known in
the art) for display on display device 524.

As illustrated in FIG. 5, computing system 510 may also
include at least one input device 528 coupled to communi-
cation infrastructure 512 via an input interface 550. Input
device 528 generally represents any type or form of input
device capable of providing input, either computer or human
generated, to computing system 510. Examples of input
device 528 include, without limitation, a keyboard, a point-
ing device, a speech recognition device, or any other input
device.

As illustrated in FIG. 5, computing system 510 may also
include a backup storage device 532, a deduplicated data
storage device 533, and a tape library 536 coupled to
communication infrastructure 512 via a storage interface
534. Storage devices 532 and 533 generally represent any
type or form of storage device or medium capable of storing
data and/or other computer-readable instructions. For
example, storage devices 532 and 533 may each include a
magnetic disk drive (e.g., a so-called hard drive), a floppy
disk drive, an optical disk drive, a flash drive, or the like.
Storage interface 534 generally represents any type or form
of interface or device for transferring data between storage
devices 532, 533, and 536 and other components of com-
puting system 510.

In certain embodiments, storage devices 532, 533, and
536 may be configured to read from and/or write to a
removable storage unit configured to store computer soft-
ware, data, or other computer-readable information.
Examples of suitable removable storage units include, with-
out limitation, a floppy disk, a magnetic tape, an optical disk,
a flash memory device, or the like. Storage devices 532, 533,
and 536 may also include other similar structures or devices
for allowing computer software, data, or other computer-
readable instructions to be loaded into computing system
510. For example, storage devices 532, 533, and 536 may be
configured to read and write software, data, or other com-
puter-readable information. Storage devices 532, 533, and
536 may also be a part of computing system 510 or may be
a separate device accessed through other interface systems.

Many other devices or subsystems may be connected to
computing system 510. Conversely, all of the components
and devices illustrated in FIG. 5 need not be present to
practice the embodiments described and/or illustrated
herein. The devices and subsystems referenced above may
also be interconnected in different ways from that shown in
FIG. 5.

US 9,448,739 Bl

13

Computing system 510 may also employ any number of
software, firmware, and/or hardware configurations. For
example, one or more of the embodiments disclosed herein
may be encoded as a computer program (also referred to as
computer software, software applications, computer-read-
able instructions, or computer control logic) on a computer-
readable storage medium. Examples of computer-readable
storage media include magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid-
state drives and flash media), and the like. Such computer
programs can also be transferred to computing system 510
for storage in memory via a network such as the Internet or
upon a carrier medium.

The computer-readable medium containing the computer
program may be loaded into computing system 510. All or
a portion of the computer program stored on the computer-
readable medium may then be stored in system memory 516
and/or various portions of storage devices 532 and 533.
When executed by processor 514, a computer program
loaded into computing system 510 may cause processor 514
to perform and/or be a means for performing the functions
of one or more of the embodiments described and/or illus-
trated herein. Additionally or alternatively, one or more of
the embodiments described and/or illustrated herein may be
implemented in firmware and/or hardware. For example,
computing system 510 may be configured as an application
specific integrated circuit (ASIC) adapted to implement one
or more of the embodiments disclosed herein.

FIG. 6 is a block diagram of a network architecture 600
in which client systems 610, 620, and 630 and servers 640
and 645 may be coupled to a network 650. Client systems
610, 620, and 630 generally represent any type or form of
computing device or system.

Similarly, servers 640 and 645 generally represent com-
puting devices or systems, such as application servers or
database servers implemented on a computing device such
as computing system 510 in FIG. 5, configured to provide
various database services and/or run certain software appli-
cations. Network 650 generally represents any telecommu-
nication or computer network including, for example, an
intranet, a wide area network (WAN), a local area network
(LAN), a personal area network (PAN), or the Internet. In
one example, servers 640 and/or 645 may include an archive
module 145 as shown in FIG. 1.

As illustrated in FIG. 6, one or more storage devices
660(1)-(N) may be directly attached to server 640. Similarly,
one or more storage devices 670(1)-(N) may be directly
attached to server 645. Storage devices 660(1)-(N) and
storage devices 670(1)-(N) generally represent any type or
form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 660(1)-(N) and storage
devices 670(1)-(N) may represent network-attached storage
(NAS) devices configured to communicate with servers 640
and 645 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS).

Servers 640 and 645 may also be connected to a storage
area network (SAN) fabric 680. SAN fabric 680 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between mul-
tiple storage devices. SAN fabric 680 may facilitate com-
munication between servers 640 and 645 and a plurality of
storage devices 690(1)-(N) and/or an intelligent storage
array 695. SAN fabric 680 may also facilitate, via network
650 and servers 640 and 645, communication between client

10

15

20

25

30

35

40

45

50

55

60

65

14

systems 610, 620, and 630 and storage devices 690(1)-(N)
and/or intelligent storage array 695 in such a manner that
devices 690(1)-(N) and array 695 appear as locally attached
devices to client systems 610, 620, and 630. As with storage
devices 660(1)-(N) and storage devices 670(1)-(N), storage
devices 690(1)-(N) and intelligent storage array 695 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

In certain embodiments, and with reference to computing
system 510 of FIG. 5, a communication interface, such as
communication interface 522 in FIG. 5, may be used to
provide connectivity between each client systems 610, 620,
and 630 and network 650. Client systems 610, 620, and 630
may be able to access information on server 640 or 645
using, for example, a web browser or other client software.
Such software may allow client systems 610, 620, and 630
to access data hosted by server 640, server 645, storage
devices 660(1)-(N), storage devices 670(1)-(N), storage
devices 690(1)-(N), or intelligent storage array 695.
Although FIG. 6 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or illustrated herein are not limited to the Internet or any
particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the embodiments disclosed herein may be encoded as a
computer program and loaded onto and executed by server
640, server 645, storage devices 660(1)-(N), storage devices
670(1)-(N), storage devices 690(1)-(N), intelligent storage
array 695, or any combination thereof. All or a portion of
one or more of the embodiments disclosed herein may also
be encoded as a computer program, stored in server 640, run
by server 645, and distributed to client systems 610, 620,
and 630 over network 650.

In some examples, all or a portion of the computing
devices in FIGS. 1, 5, and 6 may represent portions of a
cloud-computing or network-based environment. Cloud-
computing environments may provide various services and
applications via the Internet. These cloud-based services
(e.g., software as a service, platform as a service, infrastruc-
ture as a service, etc.) may be accessible through a web
browser or other remote interface. Various functions
described herein may be provided through a remote desktop
environment or any other cloud-based computing environ-
ment.

In addition, one or more of the components described
herein may transform data, physical devices, and/or repre-
sentations of physical devices from one form to another. For
example, an archive module in FIG. 1 may transform
behavior of a computing device in order to cause the
computing device to perform archive operations of data
between various storage devices.

Although the present invention has been described in
connection with several embodiments, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

What is claimed is:

1. A method comprising:

in response to a request to perform an archive operation,

detecting an amount of storage in a set of storage

devices, wherein

the set of storage devices comprises a tape drive, and

the amount of storage is available for access at one
time;

US 9,448,739 Bl

15

selecting a backup image of a plurality of backup images
to be included in the archive operation;
prior to initiating the archive operation, comparing a size
of the backup image to the amount of storage,
adding information identifying the backup image to a list,
wherein
the list identifies the plurality of backup images, and
the plurality of backup images are to be included in the
archive operation;
performing the archive operation, wherein
the performing the archive operation comprises writing
the plurality of backup images to the set of storage
devices.
2. The method of claim 1, wherein
the list comprises a plurality of fingerprint values, and
each fingerprint value of the plurality of fingerprint values
identifies a storage location for a block, a disk value,
and an offset value.
3. The method of claim 2, further comprising:
sorting the plurality of fingerprint values.
4. The method of claim 2, further comprising:
modifying a fingerprint of the plurality of fingerprint
values.
5. The method of claim 1, wherein
the plurality of backup images comprises backup images
of an object, and
the plurality of backup images comprises deduplicated
data.
6. The method of claim 1, wherein
the writing is performed in an order specified by the list.
7. The method of claim 1, further comprising:
creating a map that identifies a plurality of storage loca-
tions for each backup image written to the set of storage
devices.
8. The method of claim 1, further comprising:
restoring an object using a selected backup image of the
plurality of backup images stored on the set of storage
devices.
9. A system comprising:
one or more processors; and
memory coupled to the one or more processors, wherein
the memory stores program instructions executable by
the one or more processors to:
in response to a request to perform an archive opera-
tion, detect an amount of storage in a set of storage
devices, wherein
the set of storage devices comprises a tape drive, and
the amount of storage is available for access at one
time;
select a backup image of a plurality of backup images
to be included in the archive operation;
prior to initiating the archive operation,
compare a size of the backup image to the amount of
storage,
add information identifying the backup image to a
list, wherein
the list identifies the plurality of backup images,
and
the plurality of backup images are to be included in
the archive operation; and
perform the archive operation, wherein
performance of the archive operation comprises
writing the plurality of backup images to the set of
storage devices.

10

15

20

25

30

35

40

45

50

55

16

10. The system of claim 9, wherein

the list comprises a plurality of fingerprint values, and

each fingerprint value of the plurality of fingerprint values

identifies a storage location for a block, a disk value,
and an offset value.

11. The system of claim 9, wherein the program instruc-
tions are further executable to sort the plurality of fingerprint
values.

12. The system of claim 9, wherein

the plurality of backup images comprises backup images

of an object, and

the plurality of backup images comprises deduplicated

data.

13. The system of claim 9, wherein

the writing is performed in an order specified by the list.

14. The system of claim 9, wherein the program instruc-
tions are further executable to create a map that identifies a
plurality of storage locations for each backup image written
to the set of storage devices.

15. The system of claim 9, wherein the program instruc-
tions are further executable to restore an object using a
selected backup image of the plurality of backup images
stored on the set of storage devices.

16. A non-transitory computer readable storage medium
comprising program instructions executable to:

in response to a request to perform an archive operation,

detect an amount of storage in a set of storage devices,

wherein

the set of storage devices comprises a tape drive, and

the amount of storage is available for access at one
time;

select a backup image of a plurality of backup images to

be included in the archive operation;

prior to initiating the archive operation, compare a size of

the backup image to the amount of storage,

add information identifying the backup image to a list,

wherein

the list identifies the plurality of backup images, and

the plurality of images are to be included in the archive
operation; and

perform the archive operation, wherein

performance of the archive operation comprises writing
the plurality of backup images to the set of storage
devices.

17. The non-transitory computer readable storage medium
of claim 16, wherein

the list comprises a plurality of fingerprint values, and

each fingerprint value of the plurality of fingerprint values

identifies a storage location for a block, a disk value,
and an offset value.

18. The non-transitory computer readable storage medium
of claim 16, wherein

the plurality of backup images comprises backup images

of an object, and

the plurality of backup images comprises deduplicated

data.

19. The non-transitory computer readable storage medium
of claim 16, wherein the program instructions are further
executable to create a map that identifies a plurality of
storage locations for each backup image written to the set of
storage devices.

20. The non-transitory computer readable storage medium
of claim 16, wherein the program instructions are further
executable to restore an object using a selected backup
image of the plurality of backup images stored on the set of
storage devices.

